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Resolution of the mystery behind Cbandrasekhm’s 
black hole transformations 

J Heading 
Department of Applied Mathematics, The University College of Wales, Aberystwyth, 
Dyfed, UK 

Received 13 January 1977 

Abstract. Investigating the three differential equations in normal form of (i) Zerilli, (ii) 
Bardeen and Press, (iii) Regge and Wheeler, governing the perturbations of the 
Schwarzschild black hole, Chandrasekhar has demonstrated the somewhat complicated 
transformations between these equations. This complication hides the basic nature of the 
transformations and their mutual connections. The whole scheme can be parametrized, with 
one condition imposed, yielding for every functional parameter inevitably three potentials 
of the above types. Any Schriidinger equation in normal form can be similarly treated, but 
the analogous Bardeen and Press potential is more complicated than the original. Thus an 
investigation is undertaken as to why the Bardeen and Press potential for the black hole is 
analytically ‘simple’; conditions for this simplicity inevitably lead to this particular potential, 
and hence to the other two potentials. Every symbol gccurring in these three potentials is 
thereby explained analytically. 

1. The transformation problem 

Several differential equations of the second order have been produced that govern the 
perturbations of the Schwarzschild black hole; we may mention those of Zerilli (1970), 
Bardeen and Press (1973), and Regge and Wheeler (1957); these three equations are all 
expressible in normal form, though the second contains a potential that is not indepen- 
dent of the wavenumber. Since they are all derived from the same basic physical model, 
it follows that there must be analytical transformations between these various equa- 
tions. Chandrasekhar (1975) has produced these transformations in a comprehensive 
paper in which the Zerilli equation is first derived from the Schwarzschild metric. He 
commences his paper by stating that ‘there continues to be some elements of mystery 
shrouding the subject’, and he sets himself the task of ‘resolving some of the un- 
answered questions’. In the appendix, the same basic ideas and very similar relations 
yield the Regge and Wheeler equation. Exactly why two very similar transformations of 
the Zerilli equation and the Regge and Wheeler equation yield the identical third 
equation of Bardeen and Press remains unanswered from a mathematical point of view. 

The reason why this investigation presents problems from an analytical point of view 
is because only the explicit complicated algebraic functions pertaining to the Zerilli 
equation are used. A deeper insight into the analysis is gained when the equations are 
considered generally rather than particularly. We therefore show how all the equations 
involved may be parametrized, yielding a complete class of such equations in triplets. 
Every analogous Zerilli potential will yield two further equations automatically, 
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corresponding to those of Bardeen and Press, and Regge and Wheeler. At the same 
time, we allow the independent variable of the differential equations to be distinct from 
the independent variable of the potentials involved (as in Chandrasekhar’s investiga- 
tions). The apparent algebraic complication of Chandrasekhar’s scheme is immediately 
dissipated when it is seen how the process forms part of a general parametrized 
transformation containing both arbitrary numerical and functional parameters to 
generate it. 

We then apply the same basic transformation to various examples of Schrodinger’s 
equation; in each case, the corresponding Regge and Wheeler equation merely 
reproduces the original Schrodinger (Zerilli) equation with different eigenvalues. But 
the corresponding Bardeen and Press equation is always more complicated. The last 
section of the paper is therefore occupied with the nature of the simplicity of the 
Bardeen and Press equation in the black hole analysis, and it is found possible to derive 
this potential analytically merely from a postulate of simplicity; the remaining two 
potentials then follow automatically. 

For many theorems and analytical results behind such transformations of second- 
order differential equations in normal form, the reader is referred to a complementary 
paper by the author (Heading 1977), though the present paper is independent of any 
consultation of this other paper. 

2. The basic equations 

The Zerilli equation 

Z”+ QZ = 0, 

its dual, the Regge and Wheeler equation 

X”+Q&=O, 

and the Bardeen and Press equation 

f#d1+qC#l = 0’ 

where a prime denotes differentiation with respect to z,  and 

Q = k Z -  V=k2-  [2nz(n + 1)r3+6n2mr2+ 18nmZr + 18m3](r -2m)  
r4(nr + 3m)2 9 

Q o = k 2 - V o ~ k Z -  2[(n + 1)r - 3m](r - 2m) 
r4 9 

q =k2-  4ik(r-3m) - I ( / +  l ) ( r -2&)+2m 
r2 r3 ’ 

with 

d r - 2 m  d 
dz r dr’ 
-=-- 

and 

n = t<r - 1)(1+ 2), 
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are related by the transformations 

where 
+=aZ+PZ’, 4 = a& +BOX’,  

r3 
r -2m a =- ( V + ik W - 2k 2), p=- (W+2ik ) ,  

r 3  
r -2m 

( V,  + ik W, - 2k2) ,  
r 3  

C l , = -  r -2m 
,3 

Bo=- ‘ ( w O + 2 i k ) ,  r - 2 m  

2(nr2-3nmr-3m2) 2(r - 3m) 
r2  * 

W =  WO = 
r2(nr + 3 m )  ’ 

Although the two functions W and WO are quite different, there is a far greater 
connection between them than meets the eye at first sight. On account of the partial 
fractions involved, these transformations are almost too complicated to check directly, 
so we intend to develop a step-by-step general transformation theory together with a 
particular class of transformations that yield pairs of dual equations by means of 
numerical and functional parameters. The above quoted transformations form a 
particular pair of dual members of the class. 

3. me general transformation 

Generally, we consider the transformation between the equations 

Z“+ Q(z)Z = 0, 4”+4(2)4 = 0 

by means of the substitution 

4=aZ+@Z’. (1) 
All functions considered are differentiable as many times as necessary in the develop- 
ment of the theory. Then 

(2) 4’ = aZ’ + a ’2 + B’Z’ + BZ” = (a ’ - BQ)Z + (a + B‘)Z’, 

4” = (a ’ - BQ)Z’ + (a ’ - BQ)’Z + (a + /3 ’)’Z’ - (a + B ’)QZ 

= -4 (aZ + PZ’). 

Equating coefficients of Z and Z’, we have 

(a f -PQ)’ - (a+ /3 ’ )Q+aq=0 ,  (3)  

(a’-@Q)+(a +P’)‘+& =O, (4) 
forming in effect two simultaneous equations for a and6 when Q, q are given. Hence 

In order that our general scheme should match the particular transformations given 
by Chandrasekhar, we introduce two new functions y and W defined in terms of a andp 
by the equations 

a = y ( v + i k W - 2 k 2 ) ,  /3 = y ( W + 2 i k ) ,  
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where Q is to have the form k2-  V. In other words, y and Ware  given by 

a -ikp pV-2ika -2k2P W =  
a -ikp Y ’ V ,  

Again, to induce parametrization, introduce functions y ( z )  and b(z) ,  y being a 
constant which need have only the values f 1, 

V’+ wv= -yu(z), (6) 

W’+ v=  b ( z ) .  (7) 

These combinations occurred coincidentally in Chandrasekhar’s investigations, but 
here they appear as a vital part of our parametrization theory. 

To remove all reference to k occurring in the denominator of Q -q  given by (3, we 
multiply numerator and denominator of the second ratio by ik, and form the new ratio 

a”- @Q’ - 2p’Q - ik (2a’ + p”) 
a -ikp Q - q =  

- a ” -PO‘ - 2P’Q - 2ika’ - ikp” - 
YV 

Now from (6) and (7), 

V!’=-(b-V)V- W(-wv-yu)-yu’, 

W = b ‘ +  w v + y a .  

Consequently we substitute the forms of a, P, V’, W’, V”, W” into (8), obtaining after 
simplification, 

thereby forming the function that appears in the Bardeen and Press equation. 
Returning to the transformation equations (3) and (4), we eliminate q, obtaining 

P [ a ” - (pa)’ - a Q - /3 ’ Q ] = a (2a ’ - pQ + p ”) , 
or 

aP”-a”p + 2aa ’  +(2PP’Q +P2Q’)  = 0, 

integrating to 

(10) Qp + a ’ + a@ ‘ - a ‘p = constant. 

Upon substitution of a and p, using V’ and W’, we obtain 

y2(bV+yuW+2ikyu) =constant. (1 1) 

We now differentiate this invariant form, substituting the values of V’ and W’ given 

(y 2b)’V+ (y 2b)(-  WV- yz) + y (y 2u)’ W + yy 2u (b - V) + 2iky(y ’ U ) ’  = 0, 

by (6) and (7): 
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which may be re-arranged to 

v[(y2b)’- W(y2b)- yy2a]+(y2a)’y(W+2ik) = 0. 

It is this result that leads to the parametrization of the whole scheme. 
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(12) 

4. Parametrization of the Chandrasekhar scheme 

Thus far, equation (12) is completely general, but its structure appears to prevent 
parametrization of the general scheme. At this stage, therefore, we must specialize the 
class of equations under consideration to be that for which the Zerelli equation is a 
particular case. 

We restrict ourselves to the condition 

y2a = M ,  

a constant. The attentive reader will note that this condition is implied in the algebra of 
the Chandrasekhar scheme, and we would stress that this is the only condition that we 
are imposing on our equations. 

Equation (1 1) becomes 

y2bV+ yMW= N, (13) 

(y2b)’- W(y2b)-yM=0. (14) 

a constant, while equation (12) becomes 

In Chandrasekhar’s special case, M = 6 4  N = 4n(n  + 1). Hence 

The potential V can be written down in two different ways. First from (13), 

N-yMW =---( N yM (b/a)’-y ), 
y2b y2b  y2b b/a 

V =  

and second from (7), 

Equating these two values of V, we must have the relation 

thereby providing a relation between a and b. The remarkable feature about this result 
is that y 2  only and not y enters the equation. Hence this equation is satisfied for the 
same values of a and b whether y = + l  or -1, and this gives rise to the dual 
transformations in every case. This explains why the same right-hand sides occur in 
Chandrasekhar’s equations (53) and (A4), and (54) and (A5) respectively. The change 
in sign is noted in equations (53) and (A4), and (58) and (A6) respectively, in keeping 
with the values y = kl. The ‘surprisingly simple relation’ (58) together with (A6) are 
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merely our necessary invariants (13), and fall out as a matter of necessity rather than 
surprising coincidence. 

We may now parametrize the whole class of equations and transformations pro- 
duced by this analysis. Let u / b  = x ,  the only arbitrary functional parameter to be 
introduced to generate the whole class. Relation (17) now gives 

We may now calculate all the other functions involved in terms of x .  The procedure is as 
follows. 

With x ( z )  a chosen arbitrary function of I, constant parameters M, N and y( = *l) 
are selected. If required, x may be a function of r, in which case all derivatives with 
respect to z (denoted by a prime) must be calculated using d/dz = f ( r )  d/dr. Then the 
auxiliary function b is given by (18), from which it follows that U = bx and y 2  = M / a  = 
M/bx. W is then found from (15): 

while (16) and (13) provide two (identical) alternative forms for V: 

Nx V = b - ( ( ‘ / ~ ~ ’ - ~ ) ‘  X Nx M -yx w = - M + yx’ + y*x2. 

The parametrized Zerilli equation is given when y = +1: 

Z”+ [k - (NM-’x + x ’  + x2))Z = 0. 

The parametrized Regge and Wheeler equation is given when y = -1 

X” + [k  - (NM-’x - x ’ + x ’)w = 0.  

The parametrized Bardeen and Press equation is from (9), 

From now onwards, we shall use the symbols V, W, 0, a, fl when y = +1, and VO, 
WO, Qo, ao, Bo when y = -1. The symbols U ,  b, y ,  M, N remain unchanged in the two 
cases. The three identities follow immediately: 

(Y -ao=2y(x’ - ikx) ,  B - B o =  -2xy, v- v, = 2x’. 

Usually, there will be transformations between Z and X, as well as between 2, X 
and 4. Using (2),  we have 

a 

and similarly between 4 and X. Hence 

Z ff 

(Z‘)=(a’-BQ 

where inverse matrices exist provided that the constant in (10) is non-zero. 
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Apart from a multiplicative constant, we may take the dual transformation to be 

z = [(a + P ’ b o  - P (ab- PoQoIX + [(a + @ ’ ) B o  - P  ( (yo +@b)W, 
where 

a, a. = ~ ( P X  + x  - ikx’x-’ - 2k2) * y ( x ’  - ikx) = y s ,  * y s , ,  

p, po = y ( - x ’ x - ’ + 2 i k )  * y ( - x )  =ye1  *ye2,  

say, from the definitions of a and P and the parametric representations of V and W. The 
coefficient of X’ is more easily found by expressing it as a determinant: 

1; ;;+’,””I 
I = I  Y E 1  + Y E 2  Y61 + Y62 + Y ’ ( E 1  + €2) + Y (4 + €9 

Y E 1  - Y E 2  yS1-  @,+ Y ’ k I  -4 + Y k ;  -4) 

(upon simplification) 

= -2y2[x(-Px -x2+(x’x-l)’ ]  (upon substitution) 

= 2M, 

a constant, from the definitions of y 2 ,  a and b. 

for Z, yielding immediately A ‘ = x ’, or A = x + c. Thus 
The coefficient of X is best found by substituting Z = A ( z ) X + X ’  into the equation 

Z = ( x + c ) X + X ’  

is the transformation between the equation for Z and its dual, namely between 

Z”+ QZ = 0, X ” + ( Q + 2 x f ) X = 0 ,  

where Q = k2 - Px - x  ’ - x 2 .  P = 2c to fit together correctly. This shows the basic origin 
of the parametric function x that would yield the Bardeen and Press equation 
corresponding to the dual pair of equations. We conclude that 

z = (n + + P ) X + x ’ .  (20) 

5. Examples of the transformations 

The Chandrasekhar scheme follows by choosing 

r -2m 3m(r-2m)  
r2(nr +3m)’  x =  M = 6 m ,  N = 4n(n  + l), f ( r )  = - 9  

1 

The form for V (when placed on a common denominator) falls out immediately, and all 
the other associated functions in the scheme are easily derived. Similarly the simpler 
form for Vo falls out easily, the sign of x ’  merely being changed. 

As can be seen from the end of the preceding section, any physical wave- 
propagation equation 

Z”+[k2- V(Z) lz  = 0 (2 1) 
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has its corresponding dual equation in X via transformation (20), together with its 
analogous Bardeen and Press equation in 4. 

When V ( z )  is given, write 

V ( z )  = Px + x ’ + x 2 ,  

p ” + P p ’ -  vp = 0. 

with P = N / M ,  y = 1. Now let x = p ‘ / p  in this general Riccati equation, giving 

To reduce this to normal form, write p = e-Ip’s, giving 

(-ipZ - v)s =o, (22) 
with x =s’s-’-iP. 

Consequently, if Z = Z(z ,  k ,  P) is a solution of (21), then x can be taken as 

Zr(z ,  tip, P) 
X =  - $P, 

Z ( z ,  $P, P) 

though this does not yield necessarily simple associated functions y, W, a, . . . . The dual 
equation will be 

X” + [ k 2  - (V - 2 x ’ ) X  = 0, 

since V -  V ,  = 2 x ’ .  
Note that s = efP’p = elP’ expu x,dz). Hence if x ( z )  is known for equation (20), 

then elp‘ exp(1 x dz) is a solution of (20) when k 2  = -$P2, though this does not provide 
a general solution of (20) for arbitrary k 2 .  

Thus, in the Chandrasekhar scheme, a solution of the Zerilli equation when 
k = $iP = in(n + 1)/3m is given by 

To ascertain what happens for the equation of the harmonic oscillator, consider 

Z”+ ( k  - z 2 ) 2  = 0. 

Z”+ [ k  - 2 - ( z  - 2)]2 = 0, 

SI’+[ - iP2  - ( z 2  - 2)ls = 0, 

s”+(l-z2)s = o  

For convenience, write this as 

with V = z 2  - 2. Equation (22) is 

or 

when P = 2. Then s = exp(-iz2) for solutions bounded at z = * 00, and x = -z - 1, so 
the dual equation becomes 

X r  + ( k 2  - 2 - z2)X = 0, 

the transformation being 

2 cczx -XI. 
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This is a well known result for the harmonic oscillator, that if k 2  is an eigenvalue, 
then so is k 2 - 2 ,  provided that k 2  is not already the lowest eigenvalue (see Heading 
1975, p 300). 

Unlike the case of the equations of the black hole, the analogous Bardeen and Press 
equation is more complicated than the original equation in 2, since poles are included in 
the new potential. When y = 1, the associated functions W, b, y 2  have the values 

z2+2z  z (Z + 22 - 2) M ( z  + 1) 
(2 + 1y ’ y 2  = -2(z3+ 2.2- 2)’ W=- b =  z + l  ’ 

so a term y’/y in the Bardeen and Press potential will have poles at those points where 
the factors z + 1, z, z3+2z2-2  vanish. 

Similar transformations and results hold for the Schrodinger equation for the 
hydrogen atom, for which we shall write the radial equation in normal form as 

1 being a quantum number. Following the derivation of equation (22), write 

A Z(Z+l) --+7= Px +x’+x2,  
2 

or 

A simple solution occurs when P = A/(Z + l ) ,  when 
s =e-@ Z‘+l, 

giving 
= $’$-I -- :P = (I + 1 - P z ) / z .  

Consequently the dual equation reduces to 

)x=o, A ( 1 + l ) ( l + 2 )  
Z 2  

the transformation being 

and the inverse transformation 

Consequently, if K is an eigenvalue for the quantum number I ,  it is also for the quantum 
number I + 1, provided 

A 2  
K2#-  

4(1+ 1)” 

in which case 2 = s, being such that X vanishes identically. 
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A similar calculation may be carried out for the angular momentum of a single 
particle. In normal form, the relevant equation is 

the independent variable being 8. Following the above procedure, write 

1 m 2 - i -  
4 sin 8 

- - + 7 - Px + x + x 2, 

or 

A special solution exists when -if‘’ = m(m + I), for which we may take s = sin“’; 8, 
giving 

x = (m +t) cot e -;P. 

The dual equation then becomes 

1 (m+1)2- t  X”+ k 2 + - -  )x=o, ( 4 sin2 e 
possessing the transformation 

x = (m  +$ cot 8 z -2’. 

If k 2  is an eigenvalue for the quantum number m, it also will be for m + 1, and this 
process continues until k 2  = m(m + l), when 2 =sin”$ 8 and X=O. 

6. Derivation of the Chandrasekhar scheme from simplifying assumptions 

In the three cases just considered, the dual equations for X and Z have been simply 
derived, but in each case the analogous Bardeen and Press equation in would be very 
complicated, owing to y possessing most awkward forms. The question therefore must 
arise, why should the Bardeen and Press equation in the Chandrasekhar scheme be so 
relatively simple? In fact, can the simplicity of the Bardeen and Press equation be 
derived from fundamental assumptions that inevitably lead to the simple form for 4? 
We shall show how this question can be answered in the affirmative. 

Throughout this investigation, we shall let a symbol such as m denote the linear form 
r - ml when f is not equal to unity, and z - ml when f equals unity. Forms for x and f 
are assumed, from which y is calculated, given by 

say. M M  M M 
Y = = = x 3  +px 2 - x ( x I / x ) l  = 5 3  

We assert that the Bardeen and Press potential is ‘simple’ when: (i) the quantity (23) is a 
perfect square; and (ii) no further zeros or poles are involved other than those appearing 
in x andf. These conditions are impossible to fulfil except under certain circumstances. 
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Firstly, take x = Al/m, f = B, where 1 and m are linear factors in r, with A and B 
constants. Then 

A313 A2P12 A B 2  AB21 D=- +- +--- 
m3 m 2  Im m 3 . '  

The third term contains a single 1 in its denominator. It cannot cancel with anything in 
the numerator, so prevents D from being a perfect square. 

Secondly, take x = Al/m, f = Bn/p, with 1 # m, n f p. Then 

A313 A2P12 AB2n AB2n2 AB2n2 AB21n AB21n2 AB21n2 D=- +7-,+,+,+----- 
m m mp mp mp I m p m2p3 m 3 p 2 '  

The fifth term, alone with 1 in its denominator, prevents D from being a perfect square, 
unless cancellation is possible. We must choose n = I, and then the third and fifth terms 
cancel. Again, the fourth and seventh terms involving p 3  are 

AB212(m - 1 )  
m2p3 

The excess factor p that prevents D being a perfect square cannot be cancelled out, 
since m - 1 is a constant, not containing r. No other simplification is possible, so these 
forms for x and f are not satisfactory to achieve our object. 

Thirdly, take x = Al/m 2, f = Bn/p, with 1 # m, n # p.  As before, one single 1 occurs 
in the denominator of one term in D ;  this necessitates n = 1, so we shall assume this 
result without further discussion. Then 

A313 A2P12 AB212 2AB212 2AB213 2AB213 D=- +-+----- 

The third and fifth terms involving l / p3  now prevent a perfect square. These terms are 

m 6 '7 m 2 p 3  m 3 p 2  m 3 p 3  m 4 p 2  * 

AB212(m - 21) 
m3p3 ' 

so p must divide m - 21. Hence 

leading to 

p1=21, - m ,  (25) 
and 

m -21 
P 

-- - -1 .  

Thus term (24) equals -AB2I2/m3p2. This, together with the fourth and sixth terms in 
D, now gives 

D=$(A21+APm2-- P 

The single p in the denominator prevents D from being a perfect square, unless p = m ; 
(25) then implies m = I, which is contrary to our original requirements. This means that 
the forms for x and f are unsatisfactory. 
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Finally, consider the choice x = AI/m2p, f = Bl/q, the I in the numerator off being 
chosen for the same reason as before. No cancellations are allowed in x and f. Then 

A313 A2P12 AB212 2AB212 
m P  m P  m W  m P 4  

D=- 6 3 + 7 + - + -  

2 ~ 1 3 ~ 1 ~  A B ~ I ~  A B ~ P  2 ~ 8 ~ 1 ~  A B ~ P  --+ ------ -- m 3 m 3  m2p2q2 m 2 2 3  p q m4pq2 m2p3q2’ 

The third, fifth and seventh terms involving l / q 3  prevent D from being a perfect 
square, unless 

(i) 4 divides AB212(mp - 21p - lm);  
(ii) q = m ;  

(iii) q = p. 
Case (i) we shall not investigate further. For a perfect square, case (iii) would imply 9 = 1 
from terms 7 and 9, not allowed by our initial conditions. Case (ii) gives 

7. D=-.( P 
A12 A21 -B21m2+APm2+B2m2-B21m + 3B2m -4B2 
m P 3  P 2  

To simplify this, write L 1  = l l -pl ,  so 1 = p - L l ,  and the same for m. In partial 
fractions, 

A12 L I(B2M: - A ’) + A  + APM: - 3B2L 1M1 
D=-.( P 2  

m P 3  

- 3B2 + B2M: + APM:) . 6B2L1-2B2M1 -2APM1 
P 

+ 

To eliminate an overall odd power of p in the denominator, the coefficient of l i p 3  
must vanish. Hence choose A = BM1 (the other sign would merely change the sign of 
P ) ,  giving 

B2M112 M1(BM1+ M:P - 3 BL 1 )  - 2(BM1+ M:P - 3BL1) 
D=-(  P 

m6 P 2  
+ (-3B + BM: + PM:)) . 

To be a perfect square, yet not introducing further factors in the numerator, choose 

BMl+M:P-3BLl=0, (26 )  

enabling us to write D as 

3 B ( L & f l -  1) D =  
m6 

y is therefore proportional to m3/l. 
Overall, the conditions for simplicity are 

ml=ql ,  
A = BM1 = B ( m ,  - p l ) ,  
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and from (26), 

In Chandrasekhar’s scheme, the values of all numerical parameters are 

A = 3m/n, B = l ,  l1 = 2m, 

ml = 0, pl = -3m/n, 41 = 0, P = 2n(n + 1)/3m. 
It is obvious that these satisfy the conditions. This investigation also explains the 
‘mysterious’ factor (nr + 3m) = n (r -pl) that appears throughout the theory, though not 
in y. Based on our simplification procedure, its appearance was inevitable, given A, B 
and ml, since the equation A = BMl gives p1 = m1 - A / B .  
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